Course book references

  • Murphy, K. P. (2022). Probabilistic machine learning: an introduction. MIT press. Free online version
  • Brunton, S. L., & Kutz, J. N. (2022). Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press. Free online version
  • Hastie, Tibshirani, and Friedman. The Elements of Statistical Learning Free online version.
  • Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. “O’Reilly Media, Inc.”
  • Kutz, J. N. (2013). Data-driven modeling & scientific computation: methods for complex systems & big data. Oxford University Press.

Other online references

Data sources

YouTube Channels

Useful articles

In the news

Other Videos

Talks

Coding Resources

Useful Python Packages

Python for ML and deep learning

Python for data science

Python Tutorials

References Per Topic

Dimensionality Reduction and Modal Decomposition

Reinforcement Learning

Deep Learning

Introductions

Deep Learning for Time-series Analysis

Machine Learning for Scientific Computing

Deep Learning for Large Language Models

Variational Autoencoders

Graph Neural Networks

Modeling and Simulation

Differential Equations

Uncertainty Quantification